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permittivity” for the line is a function of the air and substrate per-
mittivities and of the geometry of the line. Equation (6) clearly
requires modification for this case. Qualitatively, however, since
(1/€) (3¢/8T) for air is relatively small and negative an improvement
in resonator temperature stability is expected. (From information in
[6] it may be deduced that for air at 20°C and at constant pressure
of 1 atm (1/e) (8¢/8T) = — 1.8 X 1076/K.) The improvement,
from 7 to 6 parts in 105/K as indicated in Table IT, is fairly small since
for microstrip most of the E field is still in the substrate.

The data in Table I may be used to predict the frequency coeffi-
cients for resonators on either orientation of sapphire, or our 96 per-
cent alumina. For resonators on our alumina the frequency coeffi-
cients are about 10 percent lower than those indicated in Table II
for sapphire, but as noted previously some variation is expected in
the figures for alumina depending on the impurity content and the
method of manufacture.
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Electromagnetic Power Absorption in
Anisotropic Tissue Media
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Abstract=——-Strong dielectric-constant anisotropy exists in muscle
tissue at the lower microwave frequencies. Based on a model derived
from tissue measurements, an analysis is carried out for single and
multiple tissue layers. Calculated effects of tissue anisotropy on
microwave fields and power absorption in the tissues are presented.
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At frequencies below 100 Hz it is known that a strong conductance
anisotropy exists in muscle tissue [1]. A fifteen-to-one difference in
skeletal muscle resistivity has been measured at ECG frequencies.
Schwan [2] attributes tissue permittivity and conductivity relaxa-
tion.in the 1-MHz region to cell-wall polarization effects. This
implies that relaxation effects exist when field components are
normal to cell walls, but are not present with field components
parallel to cell walls. In the work reported here, an idealized aniso-
tropic tissue medium is assumed, consisting of infinitely long per-
fectly parallel muscle fibers generating relaxation effects only when
there are E-field components perpendicular to the fibers. Based on
this model, a theory is developed for field effects in anisotropic
tissue, and equations for power absorption are derived.

Tissue data in the frequency range 0.001-100 MHz are based on
data by Rush et al. [1], Schwan [2], and Johnson and Guy [3].
The data estimated from these references are summarized in Tables
I and II for anisotropic skeletal muscle and fat.

Since the muscle medium consists of anisotropic conductivity and
permittivity, a complex tensor permittivity is used

e 0 O
e= {0 ¢ O
0 0 e

The vector wave equation for the electric field in an anlsotroplc
medium is derived from Maxwell’s equations

V2E — V(V-E) + wupe-E = 0.

When there are no transverse variations in the fields, as for plane-
wave propagation in the z direction, the wave equation reduces to

(8*E/82%) + wtuee-E = 0,
The solution to this second-order differential equation is

E = E.8 exp (—jks2) + Eyf exp (—jkyz)

TABLE I
EstiMarep ConpucTiviTY AND DIELECTRIC CONSTANT VARIATIONS
IN SKELETAL MUSCLE IN THE y DIRECTION
PerPENDICULAR TO THE MuscLe FiBERs

f(MHz) cy(mhos/m) ey/eo
.001 .05 125,000
.01 .08 75,500
A .30 19,000
1. .56 1,970
10. .56 252
100. 67 84.

Note: In the z direction, parallel to the fibers, we assume o, = 0.67
mho/m and ¢, /¢ = 84

TABLE II

EstimaTep ConDucTiviTy AND DIELECTRIC CONSTANT
Varrarrons N Far

f{MHz) a¢(mhos/m) eeley

.o .028 £0,000
.0 .031 20,000

A .035 4,000

1. .036 314
10. .038 30
100. .040 7.5

]
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where the propagation constants k.,k, are
ko = w(ume) ky = w(poey) .

With a knowledge of ¢, and ¢, from the tissue data in Tables I and
II, we are now in a position to determine the field intensity and
power absorption in an anisotropic tissue medium.

First, we consider a plane wave propagating in the 42z direction
in an infinite anisotropie medium with the electric vector linearly
polarized at z = 0 at an angle 0 from the z axis. For this case the
E, and E, fields become

= FEy cos 8 exp (—jkz2) Ey = Eysin 0 exp {—jky2).

The time-averaged absorbed power density Pz in the medium is
Py = 16, B B.* + Yo, E,E >

The absorbed power density, at an arbitrary distance into the
tissue z = 1 cm, as a function of polarization angle 6 and frequency,
is shown in Fig. 1. The muscle fibers are parallel to the z axis, and
the electric field is parallel to the fibers at 8 = 0°. There is a striking
difference in power absorption with the polarization angle at low
frequencies due to the anisotropic conductivity. The absorbed
power-density curves merge at higher frequencies because of reduced
anisotropy.

We next consider a linearly polarized plane wave in air, striking
a planar two-layer tissue model consisting of a fat layer of thickness
d over anisotropic muscle. In order to solve for the electric-field dis-
tribution in the tissue layers, it is necessary to solve the boundary-
value problem, matching the tangential electric and magnetic fields
at the air-fat and fat-muscle interfaces z = 0 and z = d. The elec-
tric fields in the muscle tissue, z > d, become

2cosbexp [—jhk(2 — d)]

e = E T (/) T cos byd + JT (ky ko) T (kady) Joim i

5 - 2 sin @ exp [—jky(z — d) ]
YL+ (ky/ke) T cos ked + Gt/ ko) + (Ry/Ry) D sin ked

Corresponding expressions for power absorption in the fat and re-
flectance at the boundary z = 0 can also be obtained.

The magnitude of the reflectance R is shown in Fig. 2 for § = 0°
and 90°, for a fat thickness of 0.5 cm. In both cases, R is very high
due to high tissue conductivity. For ¢ = 90°, with current flow

1.0

NORMALIZED ABSORBED POWER DENSITY
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Fig. 1. Absorbed power density in an infinite anisotropic muscle
medium as a function of polarization angle 6. The absorbed power
density is calculated at z = 1 cm and normalized to the power density
atz =0and § = 0°,
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Fig. 2. Magnitude of the reflection coefficient in air for the planar
two-layer model. Fat thickness is 0.5 ¢cm. Incident plane-wave power
density is 1 mW/cm?2.

across the muscle fibers, the reduced conductivity and higher di-
electric constant cause a lower R value. Thus the field strength
transmitted into the tissue is higher for # = 90° than for § = 0°.

Absorbed power distributions within the tissue are shown in
Figs. 3 and 4 for f = 0.01 MHz and f = 1.0 MHz, respectively.
Fat power absorption is low because of lower conductivity. Power
absorption in the muscle is remarkably insensitive to polarization
angle at f = 0.01 MHz despite large conductivity and dielectric-
constant differences. At 6 = 0° the conductivity is much higher
which would suggest more power absorption, but | E [? is lower
because the higher conductivity has caused greater wave reflection.
Fig. 5 shows the peak absorbed power density in the muscle at the
fat-muscle interface as a function of frequency. Power absorption
is slightly affected by the polarization at frequencies below 10 MHz,
but not at higher frequencies.

A five-layer model is considered next, consisting of fat thickness
equal to 1 cm, anisotropic muscle thickness equal to 7.5 ¢cm, bone
thickness equal to 3 cm, anisotropic muscle thickness equal to
7.5 em, and fat thickness equal to 1 cm. This model is representative
of the human leg. The properties of bone are assumed to be the
same as those of fat. A transmission-line model is used to develop:
the equations for the electric and magnetic fields inside the various
tissue layers. A transformation method is used to avoid the usual
procedure of matching the boundary conditions and solving 12
simultaneous equations to find the field coefficients. The method
uses Thevenin’s theorem to transform the generator and its im-
pedance to the right, and the usual impedance transformation is
used to transform the load impedance to the left. Thus, to find the
power absorbed in the third layer, the generator is transformed in
two steps to the input of layer 3, and the load impedance is trans-
formed in three steps to the output end of layer 3 to obtain the
appropriate equivalent circuit. Although the expressions become
complicated after more than one transformation, it is easy to write
the general expressions and to program them on a computer, much
easier than programming the computer to solve the 12 simultaneous
equations which would be required in the usual solution of a bound-
ary-value problem.

The results of these calculations for the five-layer model for two
frequencies are shown in Figs. 6 and 7. Significant differences occur
with polarization at f = 0.01 MHz, whereas, at f = 100 MHz, no
differences are seen. Note that in the five-layer case for f = 0.01
MHz, the absorption in muscle for § = 0° with greater ¢ is less than
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Fig. 3. Relative absorbed power density versus distance for the planar

fat—muscle model; fat thickness is 0.5 em, f = 0.01 MHaz.
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¥ig. 4. Relative absorbed power density versus distance for the planar

fat—muscle model; fat thickness is 0.5 cm, f = 1.0 MHz.

the absorption at 8 = 90° with lower o, a result opposite to that
for the corresponding two-layer case of Fig. 3. This is probably
caused by cumulative reflection-coefficient effects at the several
tissue boundaries which differentially weaken the E field for ¢ = 0°.

It should be emphasized that the model on which these calcula-~
tions are based is limited because the infinite planar structure at
these long wavelengths is not very representative of a human-sized
or animal-sized body. The calculated data do indicate that, for this
limited model, anisotropic effects can be significant at lower fre-
quencies. The one-layer model predicts an over 10:1 difference in
power absorption with polarization at 0.01 MHz and below. The
two-layer model predicts a 12-percent difference in power absorp-
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Fig. 5. Peak absorbed power density versus frequency for the planar

fat—muscle model., Fat thickness is 0.5 cm. Incident plane-wave
power density is 1 mW/cm?,
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Fig. 6. Absqrbed power density versus distance for the five-layer model.
Incident plane-wave power density is 1 mW/cm? f = 0.01 MHz.
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Fig. 7. Absorbed power density versus distance for the five-layer model
for both @ = 0° and 8 = 90° Incident plane-wave power density is
1 mW/cm?, f = 100 MHz,
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tion with polarization at 0.01 MHz. The five-layer model predicts
about a 5:1 difference.

In conclusion, it is predicted theoretically that marked differences
in tissue-absorbed power density can occur due to tissue anisotropy
at frequencies below 10 MHz. Further research efforts on aniso-
tropic effects must include more appropriate models. Whereas the
model assumes infinitely long one-directional muscle fibers, actual
skeletal muscle tissue contains finite fiber lengths. This is of little
consequence in the model. In the legs and arms, muscle-fiber orien-
tation is reasonably uniform and the one-directional model is useful.
However, in other portions of the body skeletal muscle fibers are
layered and run in several different directions. The model must be
refined in these areas of the body. A finite-layered model such as an
anisotropic sphere or spheroid is needed to extend the infinite-layered
model results. The finite-model analysis is required before useful
predictive quantitative data can be obtained. It has been previ-
ously demonstrated in this frequency range that body orientation
with respect to the RF field vectors is an important factor in tissue-
absorbed power density [4]. It is expected that body orientation
combinied with anisotropic effects will play a major role in effecting
absorbed RF power density.
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Fiber and Diffused Waveguide Structures for
Distributed-Feedback Lasers

C. ELACHI, MEMBER, IEEE,
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Abstract—Optimum threshold conditions for oscillations of trans-
versely bounded distributed-feedback (DFB) lasers dre derived and
discussed for the case of a fiber guide and diffused guide.

The recent development of integrated-optics thin~film distributed-
feedback (DFB) lasers [11-[9] has generated much interest in the
application of the DFB concept to other types of lasers. Basically,
the DFB approach consists of replacing the two end mirrors by a
volume or surface Bragg grating, throughout the active medium,
which would provide enough feedback for self-sustained oscillation.
Kogelnik and Shank [4] have dnalyzed in detail the properties of
transversely unbounded DFB lasers. Elachi and Yeh [10] and Elachi
et al. [117, have studied the case of a thin-film DFB laser and have
shown that the presence of the transverse boundary has drastic
effects on the feedback coupling and threshold gain. In this short
paper, we derive the threshold conditions for fiber and diffuse DFB
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lasers, and we show that these structures are feasible with available
active materials. A fiber DFB laser [Fig. 1(a)] can be used as a
source of an optical-fiber communication channel and thus eliminate
the input-coupling problem. A diffused-guide DFB laser [Fig. 1(d)]
is attractive because it is easy to implement [12]. A gas-capillary
laser with diffused cladding [Fig. 1(c)] has the advantage that it
can support guided waves [13]. A diffuse guide has recently been
developed [12] and analyzed [14]. Homogeneous-capillary DFB
lasers were proposed by Marcuse [7].

If the boundary of an active waveguide is corrugated with a per-
turbation  cos (2mz/A), two contradirectional modes (p and ¢) are
strongly coupled if they satisfy the Bragg condition

By + Be = 27 /A (1)

where 8, are the longitudinal wave vectors.

The coupling coefficient «,, [1], [157], [16], can be derived, in
the case of small surface perturbation, by replacing the surface cor-
rugation with a periodic surface current [11], [15], or by solving
the exact boundary condition [107]. We found the coupling coefficient
to be equal to

€ -

2

2 12 (Q,Q,) 2 2)

Kpg = 1

where k = w/c and Q, are given in Table I for the fiber and diffuse
guide case, and 7 is the amplitude of the periodic surface perturba-
tion.

If one of the regions (inside or outside the guide) is an active
medium with gain coefficient @, the effective gain coefficient would
then be CG. This is due to the fact that the optical energy is never
totally confined to the active region. The value of C was determined
by taking the dielectric constant to be complex in the gain region and
then solving for the (complex) longitudinal wave vector g;. For small
gain, a Taylor expansion series gives

k) F;
‘" Reif:l 1 +F,

(3)

for the case where the guiding region is active (inside the-fiber or in
the inhomogeneous half-space), and
k(e)2 1
C; = (52) ( 4)
Re{s:} 1 +F,
for the case where the outside region is active (cladding or homo-
geneous half-space). The expression F is given in Table I. Independ-

ently, it can be shown that in the case of an active fiber the coefficient
C;is equal to

o k@ P
* Re{f}P + P

(3)

where P and P’ are the powers inside and outside the fiber. The first
term in (5) expresses the fact that the optical ray follows a zigzag
line.

The threshold gain can now be determined by using a modified
form [11] of the Kogelnik and Shank approach [4] to take into ac-
count the fact that the forward and backward waves could be dif-
ferent modes, and therefore might have different effective gains
and group velocities.

The required threshold gain for laser oscillation is given by

2
= —————— Re{Y
Colh) + oty 01T ®
and the corresponding phase mismatch by
k 2 T (¥ 5o} )
== TIm
(o (k) + o (k) *

where Y, is a solution of



