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permittivity” forthe line is a function of theairand substrate per-

mittivities and of the geometry of the line. Equation (6) clearly

requires modification for this case. Qualitatively, however, since

(1/.) (&/M’) for air is relatively small and negative an improvement

inresonator temperature stability is expected. (From information in

[6] it maybe deduced that for air at 20”C and at constant pressure

of 1 atm (l/e) (8c/W) = — 1.8 X 10–e/K. ) The improvement,

from 7 to 6 parts in 10s/K as indicated in Table II, is fairly small since

for microstrip most of the E field is still in the substrate.

The data in Table I may be used to predict the frequency coeffi-

cientsfor resonators oneither orientation of sapphire, or our 96 per-

cent alumina. For resonators on our alumina the frequency coeffi-

cients are about 10 percent lower than those indicated in Table II

forsapphlre, but asnoted previously some variation is expected in

the figures for alumina depending on the impurity content and the

method of manufacture.
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Electromagnetic Power Absorption in

Anisotropic Tissue Media
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Abstract—Strong dielectric-constant anisotropy exists in muscle

tissue at the lower microwave frequencies. Based on a model derived

from tissue measurements, an analysis is carried out for single and

multiple tissue layers. Calculated effects of tissue anisotropy on

microwave fields and power absorption in the tissues are presented.
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At frequencies below 100 Hz it is known that a strong conductance

anisotropy exists in muscle tissue [1]. A fifteen-to-one difference in

skeletal muscle resistivity has been measured at ECG frequencies.

Schwan [2] attributes tissue permittivity and conductivity relaxa-

tion. in the l-MHz region to cell-wall polarization effects. This

implies that relaxation effects exist when field components are

normal to cell walls, but are not present with field components

parallel to cell walls. In the work reported here, an idealized aniso-

tropic tissue medium is assumed, consisting of infinitely long per-

fectly parallel muscle fibers generating relaxation effects only when

there are E-field components perpendicular to the fibers. Based on

thk model, a theory is developed for field effects in anisotropic

tiwue, and equations for power absorption are derived.

Tissue data in the frequency range 0.001–100 MHz are based on

data by Rush et al. [1], Schwan [2], and Johnson and Guy [3].

The data estimated from these references are summarized in Tables

I and II for anisotropic skeletal muscle and fat.

Since the muscle medium consists of anisotropic conductivity and

permittivity, a complex tensor permittivity is used

,.00

006.

The vector wave equation for the electric field in an anisotropic

medium is derived from Maxwell’s equations

V2E – V(V. E) + (&poz.11 = o.

When there are no transverse variations in the fields, as for plane-

wave propagation in the z direction, the wave equation reduces to

(d’E/aZ’) + @’&o?. E = o.

The solution to thk second-order differential equation is

E = Ex~ exp ( –jkzz) + Eti~ exp ( –j,k,z)

TABLE I

ESTIMATED CONDIJCTIVITY AND DIELECTRIC CONSTANT VARIATIONS

IN SKELETAL MUSCLE IN THE v DIRECTION

PERPENDICULAR TO THE MUSCLE FIBERS

f(MHz) ay(mhoslm)
=Y/ co

.001 .05 125,000

.01 .08 75,500

.1 .30 19,000

1. .56 1,970

10. .56 252

100. .67 84.

Note: In the x direction, parallel to the fibers, we assume am = 0,67
mho/m and eZ/eO = 84.

TABLE II

ESTIMATED CONDUCTIVITY AND DIELECTRIC CONSTANT

VARIATIONS IN FAT

f(MHz) af(mhoslm) c f I E.

.001 .028 50,000

.01 .031 20,000

.1 .033 4,000

1. .036 314

10. .038 30

100. .040 7.5
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where the propagation constants k& are

k. = co(poez)llz k. =@(/Joe,)I/’.

With a knowledge of es and e. from the tissue data in Tables I and

II, we are now in a position to determine the field intensity and

power absorption in ananisotropic tissue medium.

First, we consider aplanewave propagating in the +Z direction

in an infinite anisotropic medium with the electric vector linearly

polarized at z = O at an angle 0 from thez axis. For this case the

E. andl?v fields become

Es =EOcos Oexp(–jkzz) E, =E, sin Oexp (–jk..z).

The time-averaged absorbed power density FL in the medium is

FZ = +zEsEz* + kEuEv*.

The absorbed power density, at an arbitrary distance into the

tissuez = 1 cm, as a function of polarization angle e and frequency,

is shown in Fig. 1. The muscle fibers are parallel to the z axis, and

the electric field isparallel to the fibers ate = OO. There is a striking

difference in power absorption with the polarization angle at low

frequencies due to the anisotropic conductivity. The absorbed

power-density curves merge at higher frequencies because of reduced

anisotropy.

We next consider alinearly polarized plane wave in air, striking

a planar two-layer tissue model consisting of a fat layer of thickness

d over anisotropic muscle. In order to solve for the electric-field dis-

tribution in the tissue layers, it is necessary to solve the boundary-

value problem, matching the tangential electric and magnetic fields

at the air–fat and fat–muscle interfaces z = O and z = d. The elec-

tricfields inthemuscle tissue, z > d, become

Es =
2 cos @exp [ –jkz (z – d)]

[1 + (kZ/kO) ]coskfd+j[(kf/kO) + (kz/k~)] sink@

2 sin@ exp [–jik. (z – d)]

~v= [l+ (lcV/ko) ]cos?tfd+j[(kf/k~) +(kv/lcf)]sinlcfd”

Corresponding expressions for power absorption in the fat and re-

flectance attheboundaryz = Ocanalso reobtained.

The magnitude of thereflectance Risshown in Fig. 2for0 = 0°

and 90°, for a fat thickness of 0.5 cm. In both cases, R is very high

due to high tissue conductivity. For 6 =90°, with current flow

,001 ,01 ,1 10
FREQUENC+‘ ?MHz)

100

Fig. 1. Absorbed power density in an infinite anisotropic muscle

medium as a function of polarization angle e. The absorbed power

density iscalculatedatz = 1 cmandnormalized tothe power density

atz=Oand/3=0°.
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Fig. 2. Magnitude of the reflection coefficient in air for the planar

two-layer model. Fat thickness is 0.5 cm. Incident plane-wave power

density is 1 mW/cm2.

across the muscle fibers, the reduced conductivity and higher di-

electric constant cause a lower R value. Thus the field strength

transmitted into thetissue is higher fore = 90 °thanfor8 = OO.

Absorbed power clistributions within the tissue are shown in

Figs. 3 and 4 for j = 0.01 MHz and~= 1.0 MHz, respectively.

Fat power absorption is low because of lower conductivity. Power

absorption in the muscle is remarkably insensitive to polarization

angle at .f = 0.01 MHz despite large conductivity and dielectric-

constant differences. At o = 0° the conductivity is much higher

which would suggest more power absorption, but [ E [2 is lower

because the higher conductivity has caused greater wave reflection.

Fig. 5showsthe peak absorbed power density inthe muscle at the

fat–muscle interface as a function of frequency. Power absorption

isslightly affectedly thepolarization at frequencies below 10 MHz,

but not at higher frequencies.

A five-layer model is considered next, consisting of fat thickness

equal to 1 cm, anisotropic muscle thickness equal to 7.5 cm, bone

thickness equal to 3 cm; anisotropic muscle thickness equal to

7.5 cm, and fat thickness equal to 1 cm. This model is representative

of the human leg. The properties of bone are assumed to be the

same as those of fat. A transmission-line model is used to develop

theequations for the electric andmagnetic fields inside the various

tissue layers. A transformation method is used to avoid the usual

procedure of matching the boundary conditions and solving 12

simultaneous equaticms to find the field coefficients. The method

uses Thevenin’s theorem to transform the generator and its im-

pedance to the right, and the usual impedance transformation is

used to transform theload impedance to the left. Thus, to find the

power absorbed in the third layer, the generator is transformed in

two steps to the input of layer 3, and the load impedance is trans-

formed in three steps to the output end of layer 3 to obtain the

appropriate equivalent circuit. Although the expressions become

complicated after mcm-e than one transformation, it is easy to write

the general expressions andtoprogram thereon a computer, much

easier than programmingthe computer to solve the 12 simultaneous

equations which would be requiredin the usual solution of abound-

ary-value problem.

The results of these calculations for the five-layer model for two

frequencies areshown in Figs. 6and7. Significant differences occur

with polarization at ~ = 0.01 MHz, whereas, at j = 100 MHz, no

differences are seen. Note that in the five-layer case for.f=O.01

MHz, theabsorption inmusclefor O = O“withgreater uisless than
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Fig. 3. Relative absorbed power density versus distance for the planar
fat-muscle model; fat thickness is 0,5 cm, f = 0.01 MHz.
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Fig. 4. Relative absorbed power density versus distance for the planar

fat–muscle model; fat thickness is 0,5 cm, .f = 1.0 MHz.

the absorption at @ = 90” with lower u, a result opposite to that

for the corresponding two-layer csse of Fig. 3. This is probably

caused by cumulative reflection-coefficient effects at the several

tiesue boundaries which differentially weaken the E field for o = OO.

It should be emphasized that the model on which these calcula-

tions are based is limited because the infinite planar structure at

theee long wavelengths is not very representative of a human-sized

or animal-sized body. The calculated data do indicate that, for this

liiited model, anieotropic effects can be significant at lower fre-

quenciw. The one-layer model predicts an ovet 10:1 difference in

power absorption with polarization at 0.01 MHz and below. The

two-layer model predicts a 12-percent difference in power absorp-
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Fig. 5. Peak absorbed power density versus frequency for the planar

fat-muscle model. Fat thickness is 0.5 cm. Incident plane-wave

power density is 1 mW/cm2.
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Fig. 6. Absorbed power densit y versus distance for the five-layer model.
Incident plane-wave power density is 1 mW/cmz, ~ = 0.01 MHz.
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Fig. 7. Absorbed power density versus distance for the five-layer model
for both O = O” and 8 = 90”. Incident plane-wave power density is
1 mW/cm2, .f = 100 MHz.
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tion with polarization at 0.01 MHz. The five-layer model predicts

about a 5:1 difference.

In conclusion, it is predicted theoretically that marked dHferences

in tissue-absorbed power density can occur due to tissue anisotropy

at frequencies below 10 MHz. Further research efforts on aniso-

tropic effects must include more appropriate models. Whereas the

model assumes infinitely iong one-directional muscle fibers, actual

skeletal muscle tissue contains finite fiber lengths. Thk is of little

consequence in the model. In the legs and arms, muscle-fiber orien-

tation is reasonably uniform and the one-directional model is useful.

However, in other portions of the body skeletal muscle fibers are

layered and run in several different directions. The model must be

refined in these areas of the body. A finite-layered model such as an

anisotropic sphere or spheroid is needed to extend the infinite-layered

model results. The finite-model analysis is required before useful

predictive quantitative data can be obtained. It has been previ-

ously demonstrated in thk frequency range that body orientation

with respect to the RF field vectors is an important factor in tissue-

absorbed power density [4]. It is expected that body orientation

combined with anisotropic effects will play a major role in effecting

absorbed RF power density.
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Fiber and Diffused Waveguide Structures

Distributed-Feedback Lasers

C. ELACHI, l?l~~BER, 1E13E,
G. EVANS, STUDENT MEMBER, IEEE, AND

C. YEH, MEMBER, IEEE

for

Abstract—Optimum threshold conditions for oscillations of trans-

versely bounded distributed-feedback (DFB) lasers dre derived and

discussed for ihe case of a fiber guide and diffused guide.

The recent development of integrated-optics thin-fihn distributed-

feedback (DFB) lasers [1 ]–[9] hm generated much interest in the

application of the DFB concept to other types of lasers. Basically,

the DFB approach consists of replacing the two end mirrors by a

volume or surface Bragg grating, throughout the active medium,

which would provide enough feedback for self-sustained oscillation.

Kogelnik and Shank [4] have analyzed in detail the properties of

transversely unbounded DFB lasers. Elachi and Yeh [10] and Elachi

etat. [11], have studied the case of a thin-fihn DFB laser and have

ehown that the presence of the transverse boundary has drastic

effects on the feedback coupling and threshold gain. In thk short

paper, we derive the threshold conditions for fiber and diffuse DFB
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lasers, and we show that these structures are feasible with available

active materials. A fiber DFB laser [Fig. 1 (a)] can be used as a

source of an optical-fiber communication channel and thus eliminate

the input-coupling problem. A diffused-guide DFB laser [Fig. 1 (d)]

is attractive because it is easy to implement [12]. A gas-capillary

laser with diffused cladding [Fig. 1 (c)] has the advantage that it

can support guided waves [13]. A diffuse guide has recently been

developed [12] and analyzed [14]. Homogeneous-capillary DFB

lasers were proposed by Marcuse [7].
If the boundary of an active waveguide is corrugated with a per-

turbation q cos (2rrz/A), two contradwectional modes (p and q) are

strongly coupled if they satisfy the Bragg condition

& + !3, = 2rr/A (1)

where fl, are the longitudinal wave vectors.

The coupling coefficient K,. [1], [15], [16], can be derived, in

the case of small surface perturbation, by replacing the surface cor-

rugation with a periodic surface current [11], [15], or by solving

the exact boundary condition [10]. We found the coupling coefficient

to be equal to

Kpq = ~ ~/# (QpQg) -1[2 (2)

where k = CO/Cand Q, are given in Table I for the fiber and diffuse

guide case, and q is the arnphtude of the periodic surface perturba-

tion.

If one of the regions (inside or outside the guide). is an active

medium with gain coefficient G, the effective gain coefficient would

then be CG. This is due to the fact that the optical energy is never

totally confined to the active region. The value of C was determined

by taking the dielectric constant to be complex in the gain region and

then solving for the (complex) longitudinal wave vector pi. For small

gain, a Taylor expansion series gives

(3)

for the case where the guiding region is active (inside thefiber or in

the inhomogeneous half-space), and

(4)

for the case where the outside region is active (cladding or homo-

geneous half-space). The expression F is given in Table I. Independ-

ently, it can be shown that in the case of an active fiber the coefficient

C~ is equal to

(5)

where P and P’ are the powers inside and outside the fiber. The first

term in (5) expresses the fact that the optical ray follows a zigzag

line.

The threshold gain can now be determined by using a modified

form [11 ] of the Kogelnik and Shank approach [4] to take into ac-

count the fact that the forward and backward waves could be dif-

ferent modes, and therefore might have different effective gains

and group velocities.

The required threshold gain for laser oscillation is given by

G=
2

c.(k) + c,(k)
Re { Yp, ]

and the corresponding phase mismatch by

2
Ak = Im { Y,q )

c(@~(k) + *g(k))

where Yz~ is a solution of

(6)

(7)


